Search results for "Antiprotonic helium"
showing 4 items of 4 documents
Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy.
2018
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard-model particles. Here we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
The Atomic Cascade in p̄p and Implications for p̄p Annihilations at Rest
1984
Many experiments at LEAR will study the pp interaction at rest via the formation of an atomic bound system of p and p (protonium). Protonium is formed in a highly excited state when the antiproton has been stopped in a target containing gaseous or liquid hydrogen and after it has been captured by a H2 molecule. The subsequent deexcitation process ends with the annihilation of the pp atom from an atomic s-, p- or d-state. The knowledge of the angular momentum of this atomic state is clearly of fundamental importance in the analysis of the annihilation final states. The aim of this contribution is to review the present experimental and theoretical understanding of the de-excitation and annihi…
Cascade of exotic helium atoms
1987
Abstract The cascade of muonic helium and its pressure dependence has been calculated over the whole pressure range from 1×10 −2 to 1×10 3 atm. The calculation does not use any free parameter. The results show good agreement with experimental data.
Physics at CERN's Antiproton Decelerator
2013
The Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\bar{\rm H}$) and antiprotonic helium ($\bar{p}{\rm He}^+$). The first 12 years of operation saw cold $\bar{\rm H}$ synthesized by overlapping clouds of positrons ($e^+$) and antiprotons ($\bar{p}$) confined in magnetic Penning traps. Cold $\bar{\rm H}$ was also produced in collisions between Rydberg positronium atoms and $\bar{p}$. Ground-state $\bar{\rm H}$ was later trapped for up to $\sim 1000$ s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the $\bar{p}{\rm He}^+$ ato…